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> We will work in RY, d > 2. Unless stated otherwise, | - | will
denote the Euclidean norm in RY.

» Moving forward all constants depend on d and the same
symbol may denote a different constant at a different time.



» Part 1: The near Whitney extension problem.

> A map A:R?Y — R is an improper Euclidean motion
(transformation) if there exist M € O(d) and xo € RY so that
for every x € RY, A(x) = Mx + xo.

» If M € SO(d), then A is a proper (orientation preserving)
Euclidean motion. Here, O(d) and SO(d) are respectively the
orthogonal and special orthogonal groups. A Euclidean motion
can either be proper or improper.



» The Whitney extension problem:

» Let ¢ : E — R be a map defined on an arbitrary set E C RP.
How can one decide whether ¢ extends to a map ¢ : RP — R
which agrees with ¢ on E and is in C™(RP), m > 1, the space
of functions from RP to R whose derivatives of order m are
continuous and bounded.
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The near distorted Whitney extension problem:

Let E ¢ RP be compact with some geometry.

Suppose that we are given a map ¢ : E — RP with ¢ a small
distortion on E. What this means is that there exists § > 0
small enough (depending on d) so that

(1= 8)x — y] < 6(x) — 6(y)] < |x — y|(1 +6) for every
x,y € E.

Note that ¢ is distance preserving (rigid), if

lp(x) — @(y)| = |x — y| for every x,y € E. Otherwise it is non
rigid.



» How can one decide whether ¢ extends to a smooth small
distortion @ : RY — R which agrees with ¢ on E.

> Note that the distortion constant for ¢ say e will in general be
different to the distortion constant of ¢ namely 6.

» The maps ¢ and ® are examples of bi-Lipchitz maps.

» A bi-lipchitz map will not extend to another bi-lipchitz map
unless the distortion constants are small.



> We also ask if how to decide if and where in addition the
smooth small distortion ® can be approximated well by by
proper and improper Euclidean motions in small balls in RY.
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If we take E to be a finite set, we obtain the following
problem. How to understand the following.

Given £ > 0 small enough. There exists § > 0 depending on ¢
such that the following holds: Let y1,...yx and z,...zx be two
k > 1 sets of distinct points in RY. Suppose that

(1+5)_1§H§(1+5),1§i,j§k,i;éj.
i Y

Then there exists a diffeomorphism (differentiable, invertible
map (hence 1-1 and onto)) ® : RY — RP with

(L+e) M x =y S [0(x) = ®(y)] < |x — yl(1+¢), x,y € R

satisfying
Cb(y,-) = Zj, 1 < ] < k.



» |s it possible that ® at the same time agrees with a Euclidean
motion "globally away from" the points {y1, ..., yx} and
sometimes also with Euclidean motions "locally close" to each
point in {y1, ..., yk}.

» Can one say how &,§ are related.

» Near alignment problem.






Near manifold learning.




Theorem: [DF]

Let € > 0 small enough depending on d. Let {yi,...yx} and
{z1,...z} be two 1 < k < d sets of distinct points in RY.
There exists 0 > 0 small enough depending on ¢ with the
following property: Suppose that

Qo< BB sy 1<k it
vi = yjl
Then there exists a e-distorted diffeomorphism f : RY — R
satisfying
flyi)=zi,1<i<k



Building f:

Slow twists, Smooth distorted rotations which rotate slowly as
a function of the distance from the center of mass. Non
Rigidity.

Slides, Smooth distorted translations which translate slowly as
a function of the distance from the origin. Non Rigidity
Partition of unity.

Clusters (shortest paths, similarity kernels, herarchical
clustering in RY.

Gluing.



» Slow twists and slides.

» Slow Twist: Let x € RY and £ > small enough depending on
d. Let S(x) be the d x d block-diagonal matrix

Di(x) 0 0
0 D2 (X) 0
0 0 .
0 0 0
0 0 0
0 0 0

0
0
0
0
0

O O O O
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0 Di(x)

where for each i either Dj(x) is the 1 x 1 identity matrix or else

Di(x) = ( cos fi(|x])

—sin fi(|x])

sin fi(|x[) >

cos fi(|x])

where f; : R — R are functions satisfying the condition:
t|f!(t)] < ce some ¢ > 0 small enough, uniformly for t > 0.

e Let ®(x) = ©TS(Ox) where © is any fixed matrix in SO(d).



e Slide: Let ¢ > 0 be small enough depending on d. Let
g : R? — R? be smooth and have the following property.
There exists ¢ > 0 small enough depending on d such that
lg'(x)| < ce uniformly for x € RY. Consider the map
P(x) = x + g(x), x € R.



Here we illustrate the concept of a slow twist on R?. Given a fixed
e >0, and a function f : R — R satisfying t|f'(t)| < ce for every
t > 0 and for suitably small ¢ > 0, define the slow-twist matrix
S(x) for any x € R? via

| cosf(|x]) sinf(|x])
SOV =1 g f(1x) cos F(Ix])

Then given any pure rotation © € SO(2), the following map
¢ : R? — R? is a slow twist:

®(x) := 07 S5(0x)x.

For illustration purposes at first, we fix © to be the identity matrix.
For a first set of illustrations, we will look only at one application of
a slow twist with f being an exponential function with differing
scaling parameter.



Figure: Initial data lying on the line y = x, and the application of a slow
twist with f(x) = exp(—pu|x|), with ;= 10 (top left), 1 = 1 (top right),
and p = 0.1 (bottom).




For large values of i, it can be seen that the twist is quite rigid,
and even outside a small cube centered at the origin, the data is
left fixed. On the other hand, as u tends to 0, the twist becomes
closer to a pure rotation near the origin. Nevertheless, at a far
enough distance, the slow-twist ® will leave the data unchanged.
Indeed, the next figures illustrate this:
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Figure: Large scale for slow twists with f(x) = exp(—pu|x|). Left: p =1,
the twist leaves the data static outside [—5,5]%; Right: ;1 = 0.1, the twist
only starts to leave the data static outside about [—30, 30]°.



Let us pause to consider what happens when the decay condition
on the twist function f is not satisfied; in this case we will dub the
function ® a fast twist for reasons that will become apparent

T

Figure: Fast twist with function f(x) = |x|.

presently.

-
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Figure: Fast twist with f(x) = |x|? for a small interval [-3, 3] (left) and
large interval [-10, 10].



From Figure 3, one can see that when f is the identity function, the
rate of twisting is proportional to the distance away from the origin,
and hence there is no way that ® will leave points fixed outside of
any ball centered at the origin. Likewise, one sees from Figure 4
that the fast twist with function f(x) = |x|? rapidly degenerates
points into a jumbled mess.



Here we illustrate what happens when one iteratively applies a slow
twist to a fixed initial data.

Figure: Iterated slow twist with f(x) = exp(—0.5|x|). Shown is the initial
data along the line y = x, ®(x), ® o ®(x), and ¢ o d o d(x).

In Figure 5, we see an illustration of the fact that the composition
of slow twists remains a slow twist, but the distortion changes
slightly; indeed notice that as we take more iterations of the
exponential slow twist, we have to go farther away from the origin
before the new twist leave the data unchanged.



Recall that given an £ > 0, a slide is defined to be

O(x) = t + g(t),

where g satisfies |g'(t)| < ce for sufficiently small ¢ > 0. Here we
illustrate some simple examples of slides on R?.

First consider equally spaced points on the line y = —x, and the
slide given by the function

1
1+[ta]?
g(t) :=
%ef|t2‘

This is illustrated in Figure 6 shown below.

AN

Figure: Slide with the function g given above.



To give some more sophisticated examples, we consider first the

slide function
e_‘tll

g(t) = :
e—0.1|t2|

acting iteratively on uniform points along both the lines y = x and
y = —X.

Figure: Lines y = x and y = —x along with ®(x), ® o ®(x) and
® o ® o P(x)for g.



Similarly, the following figure shows the slide function

1— eIl

&(t) =
1— e—O.l‘t2|

acting iteratively on uniform points along the lines y = x and
y = —X.

Figure: Lines y = x and y = —x along with ®(x), ® o ®(x) and
®odod(x) for go.



To illustrate the effect of the distance of data from the origin, we
illustrate here how slides affect uniform points on circles of different
radii.



We use again the asymmetric sliding function

1
1+t
g(t) =

1 o—|t2]
26

Figure: Circles under 3 iterated slides with the function g above,
beginning with a circle of radius 1 (top left), 2 (top right) and 4
(bottom).

We see from Figure 9 that the farther out the data is (i.e. the
larger the radius of the initial circle, the less the effect of the slide,
which makes sense given the definition and the fact that the slides
must be e—distortions of R2.



Here we illustrate some of the motions above in R3.

The Matlab code here allows the user to generate a generic rotation
matrix in SO(3) by specifying parameters a, b, ¢, d satisfying

a’> + b%> + ¢? + d? = 1, and the rotation matrix © is defined by

2+ b? —c? - d? 2(bc — ad) 2(bd + ac)
0= 2(bc + ad) - +c2-d° 2(cd — ab)
2(bd — ac) 2(cd + ab) a?—b? —?+ d?

As a reminder, our slow twist on R? is thus ©7 S(x)Ox.



Example
Our first example is generated by the rotation matrix © as above
with parameters a = b = 1 andc=d= %, and the slow twist

. V3
matrix S as
1 0

0
0 cos(f(|x])) sin(f(|x])) |,
0 —sin(f(|x])) cos(f(|x))

where f(t) = e 2. Figures 10 and 11 show two views of the
twisted motions generated by these parameters

&

Figure: Slow Twist in R3 from Example 1






Here we generate 1000 random points on the unit sphere in R3 and
allow them to move under a slide formed by

e70.5|x1|
g(x) =x+ | el
e_%|x3‘

The results are shown in Figure 12

Figure: Anisotropic slide on the 2—sphere.



» Theorem: [DF]

» There exists n > 0 depending on ¢ for which the following
holds. Let © € SO(d), r1,r» > 0 and let 0 < 1 < nra. Then,
there exists an e-distorted diffeomorphism ¢ : RY — R9 such

that
¢(X):@X7 ‘X| Srl
¢(X):X> |X| > n

» There exists 171 > 0 depending on ¢ such that the following
holds. Let A be a proper Euclidean motion. Let r3, ry > 0.
Suppose 0 < r3 < miry and |xg| < cer3. Then there exists an
e-distorted diffeomorphism ®; : RY — R? such that

{ ®1(x) = Alx), x| <r3
(Dl(X):X? ‘X‘ >



Theorem: [DF]

E C R be a finite set with E of small diameter. There exists
e-distorted diffeomorphism @ : RY — R9 and C, C’ depending
on ¢ with C small enough and C’ large enough so that:

® coincides with an improper Euclidean motion on
{x e R?: dist(x, E) > C}.

® coincides with an improper Euclidean motion A, on
B(z, C') for each z € E.

®(z) = z for each z € E.



The Orthogonal Procrustes Matrix-Tensor-Optimization
Problem.

For a d x d matrix, M = (M;), we will mean by |M| the
Hilbert-Schmidt norm (sometimes called the Frobenius norm or

1/2
the Schatten-2-norm) on M which is: |M| := (ZJ |M,-j|2) .
Let now {yi,...,yx} and {zi1,..., zx} be two sets of distinct
sets of points in RY with certain geometry.

Concerning the form of M € O(d) for the Euclidean motion A
in the Isometry extension alignment problem, the following
optimization matrix problem below produces M when it is
known that a solution M € O(d) exists.

k
infMeO(d) Z ’(Zi - M()//))‘
i=1

How to formulate a matrix Procrustes problem for Slow twists
and Slides and indeed near isometries where one should be
able to "track" alignment?
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Removing the restriction of k. Removal of Degenerate Cases.
card(E) cannot be too large.

The diameter of the set E is not too large.

The points of the set E cannot be too close to each other.
The points of the set E are close to a hyperplane in RP.

Roughly: the number of points still has to be finite but no
longer bounded by d. Instead, roughly speaking, what is
required isthat on any d + 1 of the k points which form
vertices of a relatively voluminous simplex, the mapping ¢ is
orientation preserving. § = exp (—g) C = C(d). This makes
a difference.



» Roughly: the number of points still has to be finite but no
longer bounded by d. Instead, roughly speaking, what is
required is that on any d + 1 of the k points which form
vertices of a relatively voluminous simplex, the mapping
¢ E — ¢(E) is orientation preserving. Here, E := {y1, ..., yk}
and ¢(E) :={z1,...,z}, 6 = cexp (—<) and E cannot be
too close to a hyperplane.

» Many theorems with different geometries on the points.
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Patches analogues and optimial: § = ce.
Theorem [DF].

Let U C R? be an open set. Let E/ ¢ U C RY be not too
thin. [See book for details] . Let & be small enough.

Let ¢ : U — RY be a C1(U) map satisfying for all x,y € E’,

- <Ix=yl <o) = o) < (1+€) < [x—yl.

There exists a C! map f : R? — R and a Euclidean motion
A with the following properties:
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(1= ce)x— y] < [F(x) = F(y)] < (1+ 2)|x — y] for al
x,y € R9.

f = ¢ in a neighborhood of E’.

f = A not to "far" out.

f is one-to-one and onto.

If $ € C™(U) for some given m > 1, then f € C™(RY).



» The results in this first part given are part of a much larger
collection of results which can be found in our main reference:
S. B. Damelin, "On the Whitney near extension problem,
BMO, alignment of data, best approximation in algebraic
geometry, manifold learning and their beautiful connections: A
modern treatment", arXiv:2103.09748. To appear: John Wiley
& Sons.

» Unlabeled problems, Optimal transport, BMO (maps of
Bounded Mean Oscillation), Algorthims, Other "Vision
transformations" (for example, Projections, Affine maps, Near
reflections.)

» Johnson-Lindenstrauss, noise, near manifold learning,
uniquness, clustering, artificial intelligence.



» Part 2: Shortest limits and continum limits on complete
graphs, See [SDH]: (Annals of Applied Probability).

> Let X := {X1, X2, ..., X, € R?} be i.i.d random vectors in R?
with marginal pdf f having compact support S with metric
tensor g. Fix two points x; and x¢ in R?. Let p > 0 and define
G as the complete graph spanning X with weights
{IX; = Xi|P, 1 <i,j < n, i # j} (power distance weight). Let
Lp(xi, x¢) be the shortest path between x; and x.






» When p =1, this is the Euclidean distance and the shortest
path is a straight line. When p < 1, the shortest path is still a
straight line. Looking at the transfer from uniform distribution
to non uniform distribution, when p > 1 the shortest path is
no longer a straight line and tends to move to the centre of
the distribution favoring denser points.

» This is analogous to Newtonian verus special relativity where a
photon bends at a region of high mass.

» Thus there is a "lensing effect". How can we explain this as
n— oo?
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A continuum limit of shortest path.

Let (M, g1) be a smooth compact d-dimensional Riemannian
manifold without boundary. Assume d > 1. Consider a
probability distribution Pr over Borel subsets of M. Assume
that the distribution has a smooth Lebesgue probability density
function f with respect to g1. Let X1, X5, ... denote an i.i.d
sequence drawn from this density.

For p > 1, called the power parameter, define a new
Riemannian metric g, = f2(1_p)/dg1

That is if Z, and W, are two tangent vectors at a point
x € M, then gy(Z, Wi) = f(x)20=Pdg(Z,, W)



The main result here establshes an asymptotic limit of the
lengths of the shortest path through finite subsets of points
X = {X1...Xp} as n — oo,

If x,y € M, then let L,(x,y) denote the shortest path length
from x to y through X\ U {x,y}.

Here the edge weight between two points u and v is

disty (v, v)P. where dist; denotes the Riemannian distance
under gi.

The power weighted graph is defined as the complete graph
over X\ U {x, y}.



Theorem: [SDH]
Suppose that infp,f > 0. Then

lim n(=PVd (x,y) = C(d, p)dist,y(x,y), c.c

n—o0

with C(d,~) a positive constant independent of f.

More general statements of this result are given in [SDH] with
rate of convergence.

Note: The scaling of the Riemannian metric by f2(1—P))/d is
inversely proportional to the probability density function f.
The theorem says that the density f shortens and lenghens
paths which respectively pass through regions of high and low
density.



Metric spaces, brain and biological networks, Lensing for
examples metric spaces of functions, distances, information
theory, entropy, divergence dissimilarity, manifold learning,
clustering, quantum clustering.

Minimial paths and lensing on sparse graphs and hypergraphs.
Currently we have: KNN, MST and Complete graphs.
Complexity.

Main reference: S. B. Damelin, "On the Whitney near
extension problem, BMO, alignment of data, best
approximation in algebraic geometry, manifold learning and

their beautiful connections: A modern treatment",
arXiv:2103.09748. To appear John Wiley & Sons.



Thank you very much!
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